MT-TS1 gene mitochondrially encoded tRNA serine 1 (UCN) #### **Normal Function** The *MT-TS1* gene provides instructions for making a particular type of RNA, a molecule that is a chemical cousin of DNA. This type of RNA, called transfer RNA (tRNA), helps assemble protein building blocks known as amino acids into full-length, functioning proteins. The *MT-TS1* gene provides instructions for a specific form of tRNA that is designated as tRNA ser(UCN). During protein assembly, this molecule attaches to a particular amino acid, serine (Ser), and inserts it into the appropriate locations in the growing protein. The tRNA Ser(UCN) molecule is present in cellular structures called mitochondria. These structures convert energy from food into a form that cells can use. Through a process called oxidative phosphorylation, mitochondria use oxygen, simple sugars, and fatty acids to create adenosine triphosphate (ATP), the cell's main energy source. The tRNA Ser(UCN) molecule is involved in the assembly of proteins that carry out oxidative phosphorylation. # **Health Conditions Related to Genetic Changes** myoclonic epilepsy with ragged-red fibers Mutations in the *MT-TS1* gene have been found in a few people with variant forms of myoclonic epilepsy with ragged-red fibers (MERRF). In these cases, affected individuals typically have muscle twitches (myoclonus), muscle weakness (myopathy), difficulty coordinating movement (ataxia), hearing loss, seizures, and intellectual impairment. Two mutations in the *MT-TS1* gene have been found to cause these symptoms. One mutation replaces the DNA building block (nucleotide) thymine with the nucleotide cytosine at gene position 7512 (written as T7512C). The other mutation inserts an extra cytosine at position 7472 (written as 7472insC). Researchers have not determined how these genetic changes cause variant forms of MERRF. nonsyndromic hearing loss # palmoplantar keratoderma with deafness Some of the *MT-TS1* gene mutations responsible for hearing loss can cause additional signs and symptoms in affected individuals. For example, one mutation causes a skin condition called palmoplantar keratoderma with deafness. In addition to hearing loss, this condition causes skin on the palms of the hands and the soles of the feet to become thick, scaly, and calloused. The genetic change that results in this combination of features replaces the nucleotide adenine with the nucleotide guanine at position 7445 in the *MT-TS1* gene (written as A7445G). This mutation likely disrupts the normal production of the tRNA^{Ser(UCN)} molecule. As a result, less tRNA^{Ser(UCN)} is available to assemble proteins within mitochondria. These changes reduce the production of proteins needed for oxidative phosphorylation, which may impair the ability of mitochondria to make ATP. It is unclear why the effects of the mutation are limited to cells in the inner ear and the skin in this condition. #### other disorders In some families, mutations in the *MT-TS1* gene cause health problems unrelated to hearing loss. For example, one mutation has been identified in people with muscle pain, weakness, and extreme fatigue associated with exercise (exercise intolerance). The genetic change that causes these symptoms replaces the nucleotide adenine with the nucleotide guanine at position 7497 in the *MT-TS1* gene (written as A7497G). It is unclear why changes in the *MT-TS1* gene can cause such a large variety of signs and symptoms. Even within a single family, affected individuals may have different health problems caused by the same genetic change. Researchers believe that other genetic and environmental factors help determine whether a *MT-TS1* gene mutation leads to isolated hearing loss, hearing loss associated with other signs and symptoms, or features unrelated to hearing. # **Chromosomal Location** Molecular Location: base pairs 7,446 to 7,514 on mitochondrial DNA (Homo sapiens Annotation Release 108, GRCh38.p7) (NCBI) Re-use with attribution permitted, www.mitomap.org. # Other Names for This Gene - MTTS1 - tRNA serine 1 (UCN) - TRNS1 tRNA # **Additional Information & Resources** # **Educational Resources** - Madame Curie Bioscience Database: Mitochondrial Translation System https://www.ncbi.nlm.nih.gov/books/NBK6292/#A27945 - Mayo Clinic Mitochondrial Disease Biobank http://www.mayo.edu/research/centers-programs/mitochondrial-disease-biobank/ overview - Neuromuscular Disease Center, Washington University: MERRF http://neuromuscular.wustl.edu/mitosyn.html#merrf - Neuromuscular Disease Center, Washington University: Mitochondrial Deafness http://neuromuscular.wustl.edu/mitosyn.html#deaf - The Cell: A Molecular Approach (second edition, 2000): The Genetic System of Mitochondria https://www.ncbi.nlm.nih.gov/books/NBK9896/#A1629 #### GeneReviews - Deafness and Hereditary Hearing Loss Overview https://www.ncbi.nlm.nih.gov/books/NBK1434 - MERRF https://www.ncbi.nlm.nih.gov/books/NBK1520 - Mitochondrial Disorders Overview https://www.ncbi.nlm.nih.gov/books/NBK1224 - Nonsyndromic Hearing Loss and Deafness, Mitochondrial https://www.ncbi.nlm.nih.gov/books/NBK1422 # Scientific Articles on PubMed PubMed https://www.ncbi.nlm.nih.gov/pubmed?term=%28MTTS1%5BTIAB%5D%29+OR+%28%28Mitochondrial+Diseases%5BMAJR%5D%29+AND+%28hearing+loss%5BMH%5D%29+AND+%28tRNA%5BTIAB%5D%29%29+OR+%28%28tRNA%5BTIAB%5D%29+AND+%28ser%28UCN%29%29%29+OR+%28A7445G%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D #### **OMIM** TRANSFER RNA, MITOCHONDRIAL, SERINE, 1 http://omim.org/entry/590080 #### Research Resources - ClinVar https://www.ncbi.nlm.nih.gov/clinvar?term=MT-TS1%5Bgene%5D - Hereditary Hearing Loss Homepage http://hereditaryhearingloss.org/ - HGNC Gene Family: Mitochondrially encoded tRNAs http://www.genenames.org/cgi-bin/genefamilies/set/843 - HGNC Gene Symbol Report http://www.genenames.org/cgi-bin/gene_symbol_report?q=data/ hgnc_data.php&hgnc_id=7497 - Mitomap: rRNA/tRNA mutations http://www.mitomap.org/MITOMAP/MutationsRNA - NCBI Gene https://www.ncbi.nlm.nih.gov/gene/4574 # Sources for This Summary - Caria H, Matos T, Oliveira-Soares R, Santos AR, Galhardo I, Soares-Almeida L, Dias O, Andrea M, Correia C, Fialho G. A7445G mtDNA mutation present in a Portuguese family exhibiting hereditary deafness and palmoplantar keratoderma. J Eur Acad Dermatol Venereol. 2005 Jul;19(4):455-8. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15987292 - Finsterer J, Harbo HF, Baets J, Van Broeckhoven C, Di Donato S, Fontaine B, De Jonghe P, Lossos A, Lynch T, Mariotti C, Schöls L, Spinazzola A, Szolnoki Z, Tabrizi SJ, Tallaksen CM, Zeviani M, Burgunder JM, Gasser T; European Federation of Neurological Sciences. EFNS guidelines on the molecular diagnosis of mitochondrial disorders. Eur J Neurol. 2009 Dec;16(12): 1255-64. - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19950421 - Fischel-Ghodsian N, Kopke RD, Ge X. Mitochondrial dysfunction in hearing loss. Mitochondrian. 2004 Sep;4(5-6):675-94. Epub 2004 Nov 6. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16120424 - GeneReview: Nonsyndromic Hearing Loss and Deafness, Mitochondrial https://www.ncbi.nlm.nih.gov/books/NBK1422 - Grafakou O, Hol FA, Otfried Schwab K, Siers MH, ter Laak H, Trijbels F, Ensenauer R, Boelen C, Smeitink J. Exercise intolerance, muscle pain and lactic acidaemia associated with a 7497G>A mutation in the tRNASer(UCN) gene. J Inherit Metab Dis. 2003;26(6):593-600. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14605505 - Jaksch M, Klopstock T, Kurlemann G, Dörner M, Hofmann S, Kleinle S, Hegemann S, Weissert M, Müller-Höcker J, Pongratz D, Gerbitz KD. Progressive myoclonus epilepsy and mitochondrial myopathy associated with mutations in the tRNA(Ser(UCN)) gene. Ann Neurol. 1998 Oct;44(4): 635-40. - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9778262 - Komlósi K, Maász A, Kisfali P, Hadzsiev K, Bene J, Melegh BI, Melegh B, Ablonczy M, Németh K, Fekete G. Non-syndromic Hearing Impairment in a Hungarian Family with the m.7510T>C Mutation of Mitochondrial tRNA(Ser(UCN)) and Review of Published Cases. JIMD Rep. 2013;9:105-11. doi: 10.1007/8904_2012_187. Epub 2012 Nov 2. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23430555 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565634/ - Maász A, Komlósi K, Hadzsiev K, Szabó Z, Willems PJ, Gerlinger I, Kosztolányi G, Méhes K, Melegh B. Phenotypic variants of the deafness-associated mitochondrial DNA A7445G mutation. Curr Med Chem. 2008;15(13):1257-62. Review. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18537605 - Nakamura M, Nakano S, Goto Y, Ozawa M, Nagahama Y, Fukuyama H, Akiguchi I, Kaji R, Kimura J. A novel point mutation in the mitochondrial tRNA(Ser(UCN)) gene detected in a family with MERRF/MELAS overlap syndrome. Biochem Biophys Res Commun. 1995 Sep 5;214(1):86-93. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7669057 - Pulkes T, Liolitsa D, Eunson LH, Rose M, Nelson IP, Rahman S, Poulton J, Marchington DR, Landon DN, Debono AG, Morgan-Hughes JA, Hanna MG. New phenotypic diversity associated with the mitochondrial tRNA(SerUCN) gene mutation. Neuromuscul Disord. 2005 May;15(5):364-71. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15833431 - Sevior KB, Hatamochi A, Stewart IA, Bykhovskaya Y, Allen-Powell DR, Fischel-Ghodsian N, Maw MA. Mitochondrial A7445G mutation in two pedigrees with palmoplantar keratoderma and deafness. Am J Med Genet. 1998 Jan 13;75(2):179-85. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9450881 - Toompuu M, Yasukawa T, Suzuki T, Hakkinen T, Spelbrink JN, Watanabe K, Jacobs HT. The 7472insC mitochondrial DNA mutation impairs the synthesis and extent of aminoacylation of tRNASer(UCN) but not its structure or rate of turnover. J Biol Chem. 2002 Jun 21;277(25): 22240-50. Epub 2002 Mar 27. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11919191 - Zheng J, Ji Y, Guan MX. Mitochondrial tRNA mutations associated with deafness. Mitochondrion. 2012 May;12(3):406-13. doi: 10.1016/j.mito.2012.04.001. Epub 2012 Apr 16. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22538251 Reprinted from Genetics Home Reference: https://ghr.nlm.nih.gov/gene/MT-TS1 Reviewed: May 2014 Published: March 21, 2017 Lister Hill National Center for Biomedical Communications U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services